近期很有意思的两个新闻潮爆了IT圈,一个是中国的Deepseek一个是法国的Lucie,这两个都是可以与OpenAI和GPT媲美的人工智能大模型,那么最近有人会问这东西会不是和人脑神经技术有关呢?以后的人脑神经技术会不会向他们一样呢?

我哈哈的笑了笑,说所谓的数学人工智能大模型,所体现的人工智能是一种人类智能数学模拟的抽象游戏而已,当我们已经具备抽取人类智能的时候为什么还要仿真和抽象呢?人类最大的智能在于学习,制约人类超越机器学习能力的最大问题在于记忆和速度,超越机器的在于方法。那么神经技术人工智能能直接复制人类的学习方法吗?人类的学习方法究竟有哪些超越机器的奥秘?直接回答就是直觉性检索,那么哪里来的直觉呢?人类大脑思维的独特机制,基于个人历史产生的独特直觉,也就是物理学家检索量子理论的内容和逻辑,要比外行要高效的多;相声演员的对话内容和逻辑,远比普通人对话的高效的多。那么,那么,机器呢?一边靠吧,我们没办法复制人类这种思维模式,因为人的大脑的直觉是基于其个人独特的历史经历,真的没办法有任何的通用学习模型。也就是说人脑神经技术人工智能在机器学习方面是绝对安全的,除非你想一直盯着一个专家去完整复制他专业领域的智慧和学习模式。

所以,这些学习模型都与我无关!无关!我要做的就是机器自动化,你能和人一样操作的动了我就赢了。来来看看我的人脑神经技术人工智能自动驾驶,不就是这样吗?以后就是人先学,机器直接复制提纯就好了。。。

那么我凭什么说爱你,人脑神经技术人工智能(HNAI),因为这是人工智能的终极产品,廉价定制复制提纯的人工智能算法工厂,再见啦数学抽象和海量参数。。。

Recently, two very interesting news have made a big splash in the IT circle. One is China’s Deepseek and the other is France’s Lucie. Both of them are AI big models that can compete with OpenAI and GPT. So recently, some people have asked whether this thing is related to human brain neural technology(HNAI)? Will human brain neural technology be the same as them in the future?

I laughed and said that the so-called mathematical AI big model embodies an abstract game of mathematical simulation of human intelligence. Why do we need simulation and abstraction when we already have the ability to extract human intelligence? The greatest intelligence of human beings lies in learning. The biggest problem that restricts human beings from surpassing machine learning lies in memory and speed. The method is to surpass machines. So can neurotechnology AI directly copy human learning methods? What are the secrets of human learning methods that surpass machines? The direct answer is intuitive retrieval, so where does the intuition come from? The unique mechanism of human brain thinking, the unique intuition generated based on personal history, that is, physicists retrieve the content and logic of quantum theory, which is much more efficient than laymen; the content and logic of crosstalk actors’ dialogues are much more efficient than ordinary people’s dialogues. So, then, what about machines? Stand aside, we can’t copy this kind of thinking mode of human beings, because the intuition of the human brain is based on its unique historical experience, and there is really no universal learning model. In other words, human brain neural technology artificial intelligence is absolutely safe in machine learning, unless you want to keep staring at an expert to completely copy the wisdom and learning model of his professional field.

So, these learning models have nothing to do with me! Nothing to do! What I want to do is machine automation, and I win if you can operate it like a human. Come and see my human brain neural technology artificial intelligence automatic driving, isn’t it? In the future, people will learn first, and machines will directly copy and purify it. . .

So why should I say I love you, Human Neurotechnology Artificial Intelligence (HNAI), because this is the ultimate product of artificial intelligence, a cheap custom-made, copied and purified artificial intelligence algorithm factory, goodbye mathematical abstraction and massive parameters…

https://www.linkedin.com/feed/update/urn:li:activity:7285956946732453888/?updateEntityUrn=urn%3Ali%3Afs_updateV2%3A%28urn%3Ali%3Aactivity%3A7285956946732453888%2CFEED_DETAIL%2CEMPTY%2CDEFAULT%2Cfalse%29

留下评论

张雅楠 zeyarna

作为世界首例公开人脑神经技术受害者(2020年至今),目前已经出现了社会局部实验性的管理研究结论;同时针对末日技术的人工智能和神经技术,如何化被动为主动,对己化灾难为机会,对社会化技术压制为技术繁荣,成为我在此开博客的目的。

Let’s connect

文章分类: Article Category