非常抱歉因居家研究时神经技术大脑干扰导致数据计算混乱,现将数据重新整理后第三次发布。We are very sorry for the confusion caused by the interference of the brain of neurotechnology during home research, and we are now releasing the data for the third time.
光伏产业在神经技术人工智能可持续发展经济(KSFME)中的应用
1.人类无法长期工作的高经济价值区域
1.1.沙漠
1.2.海洋
1.3.城市垃圾处理
2.为什么是高经济价值区域
2.1.因为人类无法长期生存开发而存在巨大的非竞争性未开发的高经济潜力
2.2.由于人类气候和土地问题所导致的生存性问题必然需要开发的区域
3.HNAI in KSFME的应用场景
3.1.无人区自动化工厂
3.2.无人区沙漠改造和海洋开发
3.3.艰苦环境中的垃圾分拣和垃圾处理、包装、运输
4.HNAI in KSFME导致的用能需求
4.1.分布独立能源
4.2.无人工厂和固定海洋位置以及垃圾处理可以接受的分布式固定能源
4.3.治沙和海洋工程初建期要求的分布伴随移动能源
4.3.1.长期分布伴随能源的唯一选择:太阳能和未来的原子能电池
4.3.2.长期独立不需要燃料补给能源:太阳能和未来的原子能电池
4.3.3.太阳能的可行性
4.3.3.1.单台机器人每日耗能2.5KWH,20平米的发电板
4.3.3.2.电动汽车电池容量200KWH,2000-1000平米发电板
4.3.3.2.1.工程车辆:石化燃油;机器人无人不间断运输油料
4.3.3.2.2.电动车辆:按工程进度固定光伏电站伴随建立
4.3.3.2.2.1.有利于当地气温迅速下降
4.3.3.2.3.海洋大面积太阳能电站的可行性
抗风浪要求:太阳能板浮子
4.3.4.KDFME市场容量(以塔克拉玛干沙漠为例)
4.3.4.1.塔克拉玛干沙漠合围工程占合围工程六分之一的和田地区45公里,宽100米的4.5平方公里,就用掉了一年54万人次,相当于一天1500人;33万平方公里的塔克拉玛干沙漠共需要至少一天11万人。
4.3.4.2.建设一个城市耗人力2万人。按照河南省21个县级市计算,整个新疆假设20个县级市,共需要40万人
4.3.4.3.假设机器人为两人次,整个塔克拉玛干沙漠治沙需要25万台以上机器人
4.3.4.4.与机器人配套的光伏发电板5000万平米,50平方公里,发电量在2000兆瓦,按照50%的日照时间来看,年发电量在87.6亿千瓦时
4.3.4.5.加上机械和生活使用,如果塔克拉玛干沙漠成功治沙和永久居住,我们经济大省一年耗电9000亿千瓦时,沙漠里建100个2000兆瓦光伏发电站(50平方公里)。如果建更多的电场的话,我们可以高效的进行西电东输,满足未来人工智能的电力需求,另一方可以有效降低沙漠地表温度。
5.因此:使用沙漠建立光伏电站可以完全解决未来我国的能源短期问题,并且为机器人沙漠开发奠定基础,这就是我们直接使用了我们的地球实时丢弃的能源的效果,想想我们的海洋有多大面积?我们其实离我们的无人治沙治海和垃圾处理,技术上只有一步之遥,最重要的是我们的技术的快速成长。11万机器人可以在一年内完成塔克拉玛干的固沙任务,然后在2年内完成易智坚教授的溶胶绿化法。而40万机器人可以在一年内完成一个河南省级别城市群的建设。就是这样。
另外,我进行粗略的估计目前城市房屋占地面积基本上占城市面积的60%以上,如果把所有的屋顶都利用起来将满足整个城市目前用电的数倍以上,对于高层建筑分布供电不足的情况,我们是否可以直接利用屋顶布置太阳能板,之后进行并网用电或者是动态集中和分布用电。这样我们的城市也在彻底使用光伏的情况下较长一段时间没有任何问题了。
如果以我们2024年人均用能为标准(每年6000KWH),人均需要每小时(0.6KW),以太阳能板目前功率每平米150-200W,大约每人需要3-4平米太阳能板。这样我们计算城市中住宅占用面积就可以算出我们的城市是否能够提供足够的屋顶用于光伏发电自给。我想目前来看绝大多数城市是满足的,剩下的事情就留给算法,如何将所有屋顶进行动态并网发电。
Application of the photovoltaic industry in the Sustainable Development Economy (KSFME) of Human Neuro AI
- High economic value areas where humans cannot work for a long time
1.1. Desert
1.2. Ocean
1.3. Municipal waste treatment - Why is it a high economic value area?
2.1. Because human beings cannot survive and develop for a long time, there is a huge non-competitive and untapped high economic potential
2.2. Areas that necessarily need to be developed due to the survival problems caused by human climate and land problems - Application scenarios of HNAI in KSFME
3.1. No man’s land automated factory
3.2. No man’s land desert transformation and marine development
3.3. Garbage sorting and garbage disposal, packaging and transportation in difficult environments - Energy demand caused by HNAI in KSFME
4.1. Distribute independent energy sources
4.2. Distributed stationary energy sources acceptable for unmanned factories and fixed marine locations and waste disposal
4.3. The distribution of requirements for sand control and marine engineering in the initial construction period is accompanied by mobile energy
4.3.1. The only option for long-term distribution of accompanying energy: solar energy and future atomic batteries
4.3.2. Long-term independence does not require refueling energy sources: solar energy and future atomic batteries
4.3.3. Feasibility of solar energy
4.3.3.1. A single robot consumes 2.5KWH of energy per day, and a power generation board of 20 square meters
4.3.3.2. Electric vehicle battery capacity 200KWH, 2000-1000 square meters power panel
4.3.3.2.1. Construction vehicles: petrochemical fuel; The robot transports oil uninterruptedly
4.3.3.2.2. Electric vehicles: Fixed photovoltaic power stations are established according to the project progress
4.3.3.2.2.1. It is conducive to the rapid drop in local temperature
4.3.3.2.3. Feasibility of large-area solar power plants in the ocean
Wind and wave resistance requirements: solar panel float
4.3.4. KDFME Market Capacity (Taklamakan Desert as an Example)
4.3.4.1. The Taklamakan Desert Encirclement Project occupies 45 kilometers of the Hotan area, which accounts for one-sixth of the encirclement project, and the 4.5 square kilometers with a width of 100 meters will use 540,000 people a year, equivalent to 1,500 people a day; the 330,000 square kilometers of Taklamakan Desert requires at least 110,000 people a day.
4.3.4.2. It takes 20,000 people to build a city. According to the calculation of 21 county-level cities in Henan Province, the entire Xinjiang assumes 20 county-level cities, and a total of 400,000 people are needed
4.3.4.3. Assuming that the robot is two people, more than 250,000 robots are needed for sand control in the entire Taklamakan Desert
4.3.4.4. The photovoltaic power generation panels supporting the robot are 50 million square meters, 50 square kilometers, with a power generation capacity of 2,000 megawatts, and the annual power generation is 876 billion kWh according to 50% of the sunshine time
4.3.4.5. Adding machinery and daily use, if the Taklamakan Desert is successfully controlled and permanently inhabited, our economic province will consume 900 billion kWh of electricity a year, and a 2,000 megawatt photovoltaic power station (50 square kilometers) will be built in the desert. If more power fields are built, we can efficiently transmit electricity from west to east to meet the power demand of artificial intelligence in the future, and the other party can effectively reduce the desert surface temperature. - Therefore: the use of deserts to build photovoltaic power stations can completely solve our country’s short-term energy problems in the future, and lay the foundation for the development of robotic deserts, which is the effect of directly using the energy discarded by our earth in real time, think about how big our ocean is? We are actually only one step away from our unmanned sand control and garbage disposal, and the most important thing is the rapid growth of our technology. 110,000 robots can complete the sand fixation task of Taklamakan within one year, and then complete Professor Yi Zhijian’s sol greening method within two years. and 400,000 robots can complete the construction of a Henan provincial urban agglomeration within one year. That’s it.
In addition, I make a rough estimate that the current urban housing area basically accounts for more than 60% of the urban area, if all the roofs are used, it will meet the current electricity consumption of the whole city several times, for the situation of insufficient power supply in high-rise buildings, can we directly use the roof to arrange solar panels, and then connect to the grid or dynamically concentrate and distribute electricity. In this way, our city will also have no problems for a long time when it is completely using photovoltaics.
If we take our per capita energy consumption in 2024 (6,000KWH per year) as the standard, we need per hour (0.6KW) per person, and with the current power of solar panels of 150-200W per square meter, we need about 3-4 square meters of solar panels per person. In this way, we can calculate the residential occupancy area in the city, and we can calculate whether our city can provide enough roofs for photovoltaic power generation self-sufficiency. I think the vast majority of cities are satisfied at present, and the rest is left to the algorithm to dynamically connect all rooftops to the grid for power generation.

留下评论